Wednesday, August 03, 2005
Trials of a Paraprofessional Judy Hadley
What is it like to enter into this blobocracy as paraprofessionals? (A blobocracy is a system wherein foreign bodies are caustically digested and diffused long before they have a chance to become effective or to make waves. See "The Blobocracy Blight," Albert Shapero, Innovation, May, 1971.)
We are expected to become invisible and to do our jobs without complaint, question, or creativity. It will go better for us if we do, since very few of the "professionals" are interested in new ideas, and suggestions are often passed off with a comment that that's not what we are here for. Or they may say that the proposal is simply idealistic. Somehow the term "idealistic" has taken on the connotation of wild, irresponsible abandon and even sounds like a dirty word. The best thing for one's sanity then is to remain silent, take whatever money is left after taxes and retirement - and run.
Nonetheless, certain emotional responses are evoked among us, such as: anger, outrage, resentment, hostility, frustration, anxiety and hopelessness. The disease of pessimism is rampant. Library assistants, as paraprofessionals were called before the Greek prefix became fashionable, begin to take on schizoid tendencies, being caught between the strict definitions of professional duties and sympathy for the students we are to commandeer. Library assistants are asked to make decisions of a professional nature and receive neither a salary commensurate with the amount of time spent in public service nor - most important - a voice in the policies which govern the areas of their responsibilities.
All this with few words of encouragement. Oh yes, occasionally someone will remark: "What would we ever do without the paraprofessionals?" (speaking as if there were no one in the room.) What would they do indeed, for the truth is that these personnel are absolutely indispensible. There will never be any budget allotment large enough to replace them with professional librarians. And as no librarian worthy of that title would ever touch a typewriter with any frequency, the ever-inundating mounds of paperwork must make their circular course through the hands of the minions.
Paperwork and public service without much remuneration, voice, or recognition is the trip. We are expected to find solace in the self-recognition of a job well done. Now, one may know whether or not he is doing his job up to the expectation of his job description, but unless he is given an occasional word of encouragement, morale may plummet, thus causing the onset of Parkinson's Law. Certainly, the idea of a self-regulating, self-evaluating kind of employee is desirable, but this becomes increasingly difficult when the only comments made about the quality of work produced occur when an error has been made.
That a definite pecking order exists is witnessed by the manner in which student assistants are handled. These employees are really invisible, from the very beginning of their employment. Their status has always been sketchily defined, owing it is said, to their transient nature. One might well look into the reasons for this transiency other than for those of graduation and transfers. One would think that the purpose of a university and all its facilities is to serve the students and that to withhold from them what is rightfully theirs, namely visibility, is in error.
Until recently, students were salaried far below the federal wage scale. When budget cuts are necessary, the first economizing measure is usually that of shortening student hours. Student employees are caught between the forces of federal work/study regulations, the library budget pay restrictions, and the demands of the civil service paraprofessionals and professional staff. Some say the students have an easy job of it. But who could put up with a job for very long that consists of tedious shelving, the reading of the collection, filing, typing and taking charge of the reference desks four to five hours daily? There is no question of their absolute necessity, but they are treated as though they were being granted a great favor. The students are also conveniently blamed for everyone else's mistakes. This is easy to do because they are often inadequately trained in the work assigned to them, and can provide handy scapegoats for others' frustrations and inadequacies.
The library in general suffers from "The Communication Thing." This is a subject that has been talked to death without anything ever being done about it. It is ironical that the library should do its best to withhold information from its employees, apparently expecting any developments to be picked up at coffee breaks or on the underground wireless. (One's coffee breaks would be presumed to be one's own in any case.) This is partly due to the lack of an organized meeting for all strata of employees. Of course the professional staff have their departmentalized meetings from whence all bits of information may or may not flow. But there is no provision for others to share information except catch-as-catch-can. Occasional meetings on all staff levels would be valuable if only on a comparative basis. As it now stands, none of the departmental libraries have any idea as to how the floor above them or below them is operated. Thus, constant idle speculations are made as to how much or how little a particular floor is producing.
After this rather negative critique, it might be asked: why stay in such a frustrating atmosphere? Many people stay (although the paraprofessional turnover rate is not all that low) because they simply need the money and because the matter of job security is usually settled after a probation period. Others stay because they sincerely believe that conditions can be better and that the more than one-third of their lives spent in paid employment can be more rewarding. Besides, library work in itself is vital and dealing with the public can be a crazy, funny detective-story trip. Leaving the library is like leaving this country simply because you disagree with some things that are wrong with it, instead of staying and trying to make changes.
The question has also been put that if one wants a real voice in library affairs, why not get a library degree and then become a really acceptable part of academia? But should a paraprofessional have to change status in order to relieve frustration? One should be able to be what he is at the time to achieve satisfaction; when the times comes to do otherwise, a change can be made. And can there really be any guarantee that things will be different with a different title - as some problems touch all staff members? Wouldn't it be running away from one set of problems to another? People I know who have left this scene in order to found a more ideologically and emotionally meaningful library at the core of community life (an almost-free, grass-roots library employing all the available media) are having an equally difficult time funding the project and integrating a number of divergent philosophies.
There aren't any guaranteed remedies, but some suggestions might be made in order to make working as a paraprofessional more satisfactory. One proposal is for one set of rules that are recognised by every staff member. When a regulation is set down and then flagrantly ignored by one's superiors, the undermining of that organization's authority has begun. No one has the right to lay down laws and then break them. Either the law must be lifted, or the legislator must respect his own rules.
Library administrators must accept the responsibilities of management. Just being a librarian in a library is not enough to give one an automatic set of credentials with which to deal with management problems. Complications in an organization must be met squarely in terms of one's role as manager and not only as librarian.
Civil service paraprofessionals have begun to realize their sizable group pressure strength and should begin to exert that pressure in a responsible manner without being afraid of it. Here, we have recently learned that among formidable opponents are the state legislature and the university administration. It is the responsibility of each civil servant to make sure that he is adequately represented at the state level and to demand a voice in university affairs. University civil servants are trapped in a nether world between faculty and students and are, at present, merely 8-to-5 onlookers.
It's time for the entire library to take a look at where it's going as well as where it's been. Will the library be more, or less accommodating to undergraduate students? Is there any chance that the library could become the vital cultural center of the campus, or will it remain an isolated study area? Surely, the questions of goals might be decided as a joint effort on the part of the entire staff. This effort might even produce a more important side-effect: unity. As it now stands, disunity is one of the most pressing problems in this organization. Librarians are convinced that no other stratum could possibly share the same interests. Civil service personnel are highly suspicious of the professional staff, accusing them of elitism. Student assistants are sure that everyone thinks they are cretins.
Here, an attempt at a staff association has been started, but without much success. The publication of a staff newsletter has been received with mixed reviews. It would seem that until each group is willing to drop some of its defenses and stereotypes and really decide it's time to work for changes in the interests of all, not much will be accomplished in this area.
Probably none of this might have been so apparent or important if one could keep sharpened the very most important piece of equipment for a paraprofessional position - a keen sense of the absurd.
Alas, there's not a spare moment to hone.
Monday, August 01, 2005
Tearing down those knowledge walls
The concept of open source is not new. It is a subversive ideology that has been surfacing every now and then, setting it's mark on the pages of history.
For example, history testifies of Martin Luther's valiant efforts to translate the Bible into the common man's language, which started a tumult amongst the church hierarchy and marked the beginning of the protestant revolution. Until then, it was largely available in Latin Vulgate - restricting its use to only those who had the intellect to understand & interpret Latin. The Roman Catholic church's efforts in keeping biblical knowledge a closely guarded secret amongst church clergy and papal bureaucracy met a final end when the Bible was 'open sourced' to the common man in the 1380's.
Despite the execution penalty imposed on all those found with translated versions, it is noteworthy that this particular 'open source' movement could not be curtailed by proprietary protagonists. Today, the Bible is the world's best-selling and most widely distributed book, with more than 2.5 billion copies sold since 1815, and translations in over 2,233 languages and dialects.
Ayurveda is another example of the success of open source. All across the world, millions of documents have been written on the subject of Ayurveda, allowing people to benefit from the secrets of natural healing. Thousands of practitioners today have mastered the knowledge of Ayurveda, benefiting from the unlimited resources available in the open world.
This brings us to the logical question, "What if the originator of Ayurveda had decided to protect his knowledge with a license or an IPR?" Considering that this 'knowledge' is approximately 5000 years old, there's no doubt that he would be a serious contender for the position of the world's richest man today.
In stark contrast to Ayurveda, we have a closely guarded industry formed around life saving drugs today. The composition of these drugs is never disclosed and their labs follow strict codes of secrecy like military facilities. This means that a certain set of people are making billions of dollars at the expense of our community. Despite having the most amazing minds in this country, we sadly cannot afford to provide low cost, life saving drugs to our citizens on our own, all because somebody invented it first and doesn't want to open source their knowledge.
The big question on everyone's mind is, "Why would someone open source an idea that they obviously struggled to work so hard for?" open sourcing your innovation to the community doesn't imply bankruptcy. In fact, open sourcing an idea invites "immediate" attention and sparks community interest. And when this interest reaches the brim, the services and support opportunities that exist around that knowledge just explode, allowing the innovator to not just make money - but give birth to a whole new economy.
Take Accountancy or Law for example. These two represent different streams of knowledge, both of which are in the open source realm. Even though this knowledge is freely available to anyone and everyone, businesses and professionals still continue to thrive on it. You prefer to hire the services of a lawyer or a Chartered Accountant because you value their services. That's the beauty of open source. Knowledge that is essential to the community should be free, but the services that surround it should be commercial in nature to allow business interests to thrive.
I am of the firm belief that money should never be made at the expense of restricting knowledge and innovation. Money can always be made by forming a services driven model around your knowledge. In the same way, the Roman Catholic Church could have continued to made billions of dollars if they had managed to keep the Bible 'licensed' from the people (which they did succeed to do, for about 1000 years!) The authors of the Quran, Mahabharata, Ramayan, Bhagwad Gita and hundreds of literary works of epic proportion could have taken the same route. But they have taught us an important lesson by giving and sharing their knowledge with the community.
Software, like knowledge is becoming essential to everyone simply because it is the basic building block of the digital age. Because it is increasingly being walled off and restricted by proprietary software companies, costs associated with software development are sky rocketing, innovation is extremely limited and there always litigation threats floating around waiting to bring promising ventures down.
Similarly (but not identically), commercial software developers still want to keep their software a closely guarded secret from end-users. This "knowledge wall" makes it impossible for end users to fix problems themselves, or even know if there are serious flaws in the software, which they use.
The very success of science in the last 2500 years has been due to the open publication and peer review of scientific results. Many community driven entities today, like the extremely active Science Commons, are working towards creating an open, accessible commons for knowledge.
With India rapidly absorbing the principles of open source, it is only a matter of time that these "knowledge walls" will be broken. And when they all come crashing down, we shall witness a revolutionary intellectual movement, a rapid fire spread of innovation that will put India on the global map forever.
The author is Head, learning services, Red Hat India Pvt. Ltd.
Thursday, July 21, 2005
AS WE MAY THINK
by VANNEVAR BUSH
THE ATLANTIC MONTHLY, JULY 1945
----------------------------------------------------------------------
This article was originally published in the July 1945 issue of The Atlantic Monthly. It is reproduced here with their permission.
The electronic version was prepared by Denys Duchier, April 1994. Please email comments and corrections to dduchier@csi.uottawa.ca.
----------------------------------------------------------------------
As Director of the Office of Scientific Research and Development, Dr. Vannevar Bush has coordinated the activities of some six thousand leading American scientists in the application of science to warfare. In this significant article he holds up an incentive for scientists when the fighting has ceased. He urges that men of science should then turn to the massive task of making more accessible our bewildering store of knowledge. For many years inventions have extended man's physical powers rather than the powers of his mind. Trip hammers that multiply the fists, microscopes that sharpen the eye, and engines of destruction and detection are new results, but the end results, of modern science. Now, says Dr. Bush, instruments are at hand which, if properly developed, will give man access to and command over the inherited knowledge of the ages. The perfection of these pacific instruments should be the first objective of our scientists as they emerge from their war work. Like Emerson's famous address of 1837 on ``The American Scholar,'' this paper by Dr. Bush calls for a new relationship between thinking man and the sum of our knowledge. - The Editor
----------------------------------------------------------------------
This has not been a scientist's war; it has been a war in which all have had a part. The scientists, burying their old professional competition in the demand of a common cause, have shared greatly and learned much. It has been exhilarating to work in effective partnership. Now, for many, this appears to be approaching an end. What are the scientists to do next?
For the biologists, and particularly for the medical scientists, there can be little indecision, for their war work has hardly required them to leave the old paths. Many indeed have been able to carry on their war research in their familiar peacetime laboratories. Their objectives remain much the same.
It is the physicists who have been thrown most violently off stride, who have left academic pursuits for the making of strange destructive gadgets, who have had to devise new methods for their unanticipated assignments. They have done their part on the devices that made it possible to turn back the enemy. They have worked in combined effort with the physicists of our allies. They have felt within themselves the stir of achievement. They have been part of a great team. Now, as peace approaches, one asks where they will find objectives worthy of their best.
1
Of what lasting benefit has been man's use of science and of the new instruments which his research brought into existence? First, they have increased his control of his material environment. They have improved his food, his clothing, his shelter; they have increased his security and released him partly from the bondage of bare existence. They have given him increased knowledge of his own biological processes so that he has had a progressive freedom from disease and an increased span of life. They are illuminating the interactions of his physiological and psychological functions, giving the promise of an improved mental health.
Science has provided the swiftest communication between individuals; it has provided a record of ideas and has enabled man to manipulate and to make extracts from that record so that knowledge evolves and endures throughout the life of a race rather than that of an individual.
There is a growing mountain of research. But there is increased evidence that we are being bogged down today as specialization extends. The investigator is staggered by the findings and conclusions of thousands of other workers - conclusions which he cannot find time to grasp, much less to remember, as they appear. Yet specialization becomes increasingly necessary for progress, and the effort to bridge between disciplines is correspondingly superficial.
Professionally our methods of transmitting and reviewing the results of research are generations old and by now are totally inadequate for their purpose. If the aggregate time spent in writing scholarly works and in reading them could be evaluated, the ratio between these amounts of time might well be startling. Those who conscientiously attempt to keep abreast of current thought, even in restricted fields, by close and continuous reading might well shy away from an examination calculated to show how much of the previous month's efforts could be produced on call. Mendel's concept of the laws of genetics was lost to the world for a generation because his publication did not reach the few who were capable of grasping and extending it; and this sort of catastrophe is undoubtedly being repeated all about us, as truly significant attainments become lost in the mass of the inconsequential.
The difficulty seems to be, not so much that we publish unduly in view of the extent and variety of present-day interests, but rather that publication has been extended far beyond our present ability to make real use of the record. The summation of human experience is being expanded at a prodigious rate, and the means we use for threading through the consequent maze to the momentarily important item is the same as was used in the days of square-rigged ships.
But there are signs of a change as new and powerful instrumentalities come into use. Photocells capable of seeing things in a physical sense, advanced photography which can record what is seen or even what is not, thermionic tubes capable of controlling potent forces under the guidance of less power than a mosquito uses to vibrate his wings, cathode ray tubes rendering visible an occurrence so brief that by comparison a microsecond is a long time, relay combinations which will carry out involved sequences of movements more reliably than any human operator and thousand of times as fast - there are plenty of mechanical aids with which to effect a transformation in scientific records.
Two centuries ago Leibnitz invented a calculating machine which embodied most of the essential features of recent keyboard devices, but it could not then come into use. The economics of the situation were against it: the labor involved in constructing it, before the days of mass production, exceeded the labor to be saved by its use, since all it could accomplish could be duplicated by sufficient use of pencil and paper. Moreover, it would have been subject to frequent breakdown, so that it could not have been depended upon; for at that time and long after, complexity and unreliability were synonymous.
Babbage, even with remarkably generous support for his time, could not produce his great arithmetical machine. His idea was sound enough, but construction and maintenance costs were then too heavy. Had a Pharaoh been given detailed and explicit designs of an automobile, and had he understood them completely, it would have taxed the resources of his kingdom to have fashioned the thousands of parts for a single car, and that car would have broken down on the first trip to Giza.
Machines with interchangeable parts can now be constructed with great economy of effort. In spite of much complexity, they perform reliably. Witness the humble typewriter, or the movie camera, or the automobile. Electrical contacts have ceased to stick when thoroughly understood. Note the automatic telephone exchange, which has hundred of thousands of such contacts, and yet is reliable. A spider web of metal, sealed in a thin glass container, a wire heated to brilliant glow, in short, the thermionic tube of radio sets, is made by the hundred million, tossed about in packages, plugged into sockets - and it works! Its gossamer parts, the precise location and alignment involved in its construction, would have occupied a master craftsman of the guild for months; now it is built for thirty cents. The world has arrived at an Age of cheap complex devices of great reliability; and something is bound to come of it.
2
A record, if it is to be useful to science, must be continuously extended, it must be stored, and above all it must be consulted. Today we make the record conventionally by writing and photography, followed by printing; but we also record on film, on wax disks, and on magnetic wires. Even if utterly new recording procedures do not appear, these present ones are certainly in the process of modification and extension.
Certainly progress in photography is not going to stop. Faster material and lenses, more automatic cameras, finer-grained sensitive compounds to allow an extension of the minicamera idea, are all imminent. Let us project this trend ahead to a logical, if not inevitable, outcome. The camera hound of the future wears on his forehead a lump a little larger than a walnut. It takes pictures 3 millimeters square, later to be projected or enlarged, which after all involves only a factor of 10 beyond present practice. The lens is of universal focus, down to any distance accommodated by the unaided eye, simply because it is of short focal length. There is a built-in photocell on the walnut such as we now have on at least one camera, which automatically adjusts exposure for a wide range of illumination. There is film in the walnut for a hundred exposures, and the spring for operating its shutter and shifting its film is wound once for all when the film clip is inserted. It produces its result in full color. It may well be stereoscopic, and record with spaced glass eyes, for striking improvements in stereoscopic technique are just around the corner.
The cord which trips its shutter may reach down a man's sleeve within easy reach of his fingers. A quick squeeze, and the picture is taken. On a pair of ordinary glasses is a square of fine lines near the top of one lens, where it is out of the way of ordinary vision. When an object appears in that square, it is lined up for its picture. As the scientist of the future moves about the laboratory or the field, every time he looks at something worthy of the record, he trips the shutter and in it goes, without even an audible click. Is this all fantastic? The only fantastic thing about it is the idea of making as many pictures as would result from its use.
Will there be dry photography? It is already here in two forms. When Brady made his Civil War pictures, the plate had to be wet at the time of exposure. Now it has to be wet during development instead. In the future perhaps it need not be wetted at all. There have long been films impregnated with diazo dyes which form a picture without development, so that it is already there as soon as the camera has been operated. An exposure to ammonia gas destroys the unexposed dye, and the picture can then be taken out into the light and examined. The process is now slow, but someone may speed it up, and it has no grain difficulties such as now keep photographic researchers busy. Often it would be advantageous to be able to snap the camera and to look at the picture immediately.
Another process now in use is also slow, and more or less clumsy. For fifty years impregnated papers have been used which turn dark at every point where an electrical contact touches them, by reason of the chemical change thus produced in an iodine compound included in the paper. They have been used to make records, for a pointer moving across them can leave a trail behind. If the electrical potential on the pointer is varied as it moves, the line becomes light or dark in accordance with the potential.
This scheme is now used in facsimile transmission. The pointer draws a set of closely spaced lines across the paper one after another. As it moves, its potential is varied in accordance with a varying current received over wires from a distant station, where these variations are produced by a photocell which is similarly scanning a picture. At every instant the darkness of the line being drawn is made equal to the darkness of the point on the picture being observed by the photocell. Thus, when the whole picture has been covered, a replica appears at the receiving end.
A scene itself can be just as well looked over line by line by the photocell in this way as can a photograph of the scene. This whole apparatus constitutes a camera, with the added feature, which can be dispensed with if desired, of making its picture at a distance. It is slow, and the picture is poor in detail. Still, it does give another process of dry photography, in which the picture is finished as soon as it is taken.
It would be a brave man who could predict that such a process will always remain clumsy, slow, and faulty in detail. Television equipment today transmits sixteen reasonably good images a second, and it involves only two essential differences from the process described above. For one, the record is made by a moving beam of electrons rather than a moving pointer, for the reason that an electron beam can sweep across the picture very rapidly indeed. The other difference involves merely the use of a screen which glows momentarily when the electrons hit, rather than a chemically treated paper or film which is permanently altered. This speed is necessary in television, for motion pictures rather than stills are the object.
Use chemically treated film in place of the glowing screen, allow the apparatus to transmit one picture rather than a succession, and a rapid camera for dry photography results. The treated film needs to be far faster in action than present examples, but it probably could be. More serious is the objection that this scheme would involve putting the film inside a vacuum chamber, for electron beams behave normally only in such a rarefied environment. This difficulty could be avoided by allowing the electron beam to play on one side of a partition, and by pressing the film against the other side, if this partition were such as to allow the electrons to go through perpendicular to its surface, and to prevent them from spreading out sideways. Such partitions, in crude form, could certainly be constructed, and they will hardly hold up the general development.
Like dry photography, microphotography still has a long way to go. The basic scheme of reducing the size of the record, and examining it by projection rather than directly, has possibilities too great to be ignored. The combination of optical projection and photographic reduction is already producing some results in microfilm for scholarly purposes, and the potentialities are highly suggestive. Today, with microfilm, reductions by a linear factor of 20 can be employed and still produce full clarity when the material is re-enlarged for examination. The limits are set by the graininess of the film, the excellence of the optical system, and the efficiency of the light sources employed. All of these are rapidly improving.
Assume a linear ratio of 100 for future use. Consider film of the same thickness as paper, although thinner film will certainly be usable. Even under these conditions there would be a total factor of 10,000 between the bulk of the ordinary record on books, and its microfilm replica. The Encyclopoedia Britannica could be reduced to the volume of a matchbox. A library of a million volumes could be compressed into one end of a desk. If the human race has produced since the invention of movable type a total record, in the form of magazines, newspapers, books, tracts, advertising blurbs, correspondence, having a volume corresponding to a billion books, the whole affair, assembled and compressed, could be lugged off in a moving van. Mere compression, of course, is not enough; one needs not only to make and store a record but also to be able to consult it, and this aspect of the matter comes later. Even the modern great library is not generally consulted; it is nibbled by a few.
Compression is important, however, when it comes to costs. The material for the microfilm Britannica would cost a nickel, and it could be mailed anywhere for a cent. What would it cost to print a million copies? To print a sheet of newspaper, in a large edition, costs a small fraction of a cent. The entire material of the Britannica in reduced microfilm form would go on a sheet eight and one-half by eleven inches. Once it is available, with the photographic reproduction methods of the future, duplicates in large quantities could probably be turned out for a cent apiece beyond the cost of materials. The preparation of the original copy? That introduces the next aspect of the subject.
3
To make the record, we now push a pencil or tap a typewriter. Then comes the process of digestion and correction, followed by an intricate process of typesetting, printing, and distribution. To consider the first stage of the procedure, will the author of the future cease writing by hand or typewriter and talk directly to the record? He does so indirectly, by talking to a stenographer or a wax cylinder; but the elements are all present if he wishes to have his talk directly produce a typed record. All he needs to do is to take advantage of existing mechanisms and to alter his language.
At a recent World Fair a machine called a Voder was shown. A girl stroked its keys and it emitted recognizable speech. No human vocal cords entered in the procedure at any point; the keys simply combined some electrically produced vibrations and passed these on to a loud-speaker. In the Bell Laboratories there is the converse of this machine, called a Vocoder. The loudspeaker is replaced by a microphone, which picks up sound. Speak to it, and the corresponding keys move. This may be one element of the postulated system.
The other element is found in the stenotype, that somewhat disconcerting device encountered usually at public meetings. A girl strokes its keys languidly and looks about the room and sometimes at the speaker with a disquieting gaze. From it emerges a typed strip which records in a phonetically simplified language a record of what the speaker is supposed to have said. Later this strip is retyped into ordinary language, for in its nascent form it is intelligible only to the initiated. Combine these two elements, let the Vocoder run the stenotype, and the result is a machine which types when talked to.
Our present languages are not especially adapted to this sort of mechanization, it is true. It is strange that the inventors of universal languages have not seized upon the idea of producing one which better fitted the technique for transmitting and recording speech. Mechanization may yet force the issue, especially in the scientific field; whereupon scientific jargon would become still less intelligible to the layman.
One can now picture a future investigator in his laboratory. His hands are free, and he is not anchored. As he moves about and observes, he photographs and comments. Time is automatically recorded to tie the two records together. If he goes into the field, he may be connected by radio to his recorder. As he ponders over his notes in the evening, he again talks his comments into the record. His typed record, as well as his photographs, may both be in miniature, so that he projects them for examination.
Much needs to occur, however, between the collection of data and observations, the extraction of parallel material from the existing record, and the final insertion of new material into the general body of the common record. For mature thought there is no mechanical substitute. But creative thought and essentially repetitive thought are very different things. For the latter there are, and may be, powerful mechanical aids.
Adding a column of figures is a repetitive thought process, and it was long ago properly relegated to the machine. True, the machine is sometimes controlled by the keyboard, and thought of a sort enters in reading the figures and poking the corresponding keys, but even this is avoidable. Machines have been made which will read typed figures by photocells and then depress the corresponding keys; these are combinations of photocells for scanning the type, electric circuits for sorting the consequent variations, and relay circuits for interpreting the result into the action of solenoids to pull the keys down.
All this complication is needed because of the clumsy way in which we have learned to write figures. If we recorded them positionally, simply by the configuration of a set of dots on a card, the automatic reading mechanism would become comparatively simple. In fact, if the dots are holes, we have the punched-card machine long ago produced by Hollorith for the purposes of the census, and now used throughout business. Some types of complex businesses could hardly operate without these machines.
Adding is only one operation. To perform arithmetical computation involves also subtraction, multiplication, and division, and in addition some method for temporary storage of results, removal from storage for further manipulation, and recording of final results by printing. Machines for these purposes are now of two types: keyboard machines for accounting and the like, manually controlled for the insertion of data, and usually automatically controlled as far as the sequence of operations is concerned; and punched-card machines in which separate operations are usually delegated to a series of machines, and the cards then transferred bodily from one to another. Both forms are very useful; but as far as complex computations are concerned, both are still embryo.
Rapid electrical counting appeared soon after the physicists found it desirable to count cosmic rays. For their own purposes the physicists promptly constructed thermionic-tube equipment capable of counting electrical impulses at the rate of 100,000 a second. The advanced arithmetical machines of the future will be electrical in nature, and they will perform at 100 times present speeds, or more.
Moreover, they will be far more versatile than present commercial machines, so that they may readily be adapted for a wide variety of operations. They will be controlled by a control card or film, they will select their own data and manipulate it in accordance with the instructions thus inserted, they will perform complex arithmetical computations at exceedingly high speeds, and they will record results
in such form as to be readily available for distribution or for later further manipulation. Such machines will have enormous appetites. One of them will take instructions and data from a roomful of girls armed with simple keyboard punches, and will deliver sheets of computed results every few minutes. There will always be plenty of things to compute in the detailed affairs of millions of people doing complicated things.
4
The repetitive processes of thought are not confined, however, to matters of arithmetic and statistics. In fact, every time one combines and records facts in accordance with established logical processes, the creative aspect of thinking is concerned only with the selection of the data and the process to be employed, and the manipulation thereafter is repetitive in nature and hence a fit matter to be relegated to the machines. Not so much has been done along these lines, beyond the bounds of arithmetic, as might be done, primarily because of the economics of the situation. The needs of business, and the extensive market obviously waiting, assured the advent of mass-produced arithmetical machines just as soon as production methods were sufficiently advanced.
With machines for advanced analysis no such situation existed; for there was and is no extensive market; the users of advanced methods of manipulating data are a very small part of the population. There are, however, machines for solving differential equations - and functional and integral equations, for that matter. There are many special machines, such as the harmonic synthesizer which predicts the tides. There will be many more, appearing certainly first in the hands of the scientist and in small numbers.
If scientific reasoning were limited to the logical processes of arithmetic, we should not get far in our understanding of the physical world. One might as well attempt to grasp the game of poker entirely by the use of the mathematics of probability. The abacus, with its beads strung on parallel wires, led the Arabs to positional numeration and the concept of zero many centuries before the rest of the world; and it was a useful tool - so useful that it still exists.
It is a far cry from the abacus to the modern keyboard accounting machine. It will be an equal step to the arithmetical machine of the future. But even this new machine will not take the scientist where he needs to go. Relief must be secured from laborious detailed manipulation of higher mathematics as well, if the users of it are to free their brains for something more than repetitive detailed transformations in accordance with established rules. A mathematician is not a man who can readily manipulate figures; often he cannot. He is not even a man who can readily perform the transformation of equations by the use of calculus. He is primarily an individual who is skilled in the use of symbolic logic on a high plane, and especially he is a man of intuitive judgment in the choice of the manipulative processes he employs.
All else he should be able to turn over to his mechanism, just asconfidently as he turns over the propelling of his car to the intricate mechanism under the hood. Only then will mathematics be practically effective in bringing the growing knowledge of atomistics to the useful solution of the advanced problems of chemistry, metallurgy, and biology. For this reason there will come more machines to handle advanced mathematics for the scientist. Some of them will be sufficiently bizarre to suit the most fastidious connoisseur of the present artifacts of civilization.
5
The scientist, however, is not the only person who manipulates data and examines the world about him by the use of logical processes, although he sometimes preserves this appearance by adopting into the fold anyone who becomes logical, much in the manner in which a British labor leader is elevated to knighthood. Whenever logical processes of thought are employed - that is, whenever thought for a time runs along an accepted groove - there is an opportunity for the machine. Formal logic used to be a keen instrument in the hands of the teacher in his trying of students' souls. It is readily possible to construct a machine which will manipulate premises in accordance with formal logic, simply by the clever use of relay circuits. Put a set of premises into such a device and turn the crank, and it will readily pass out conclusion after conclusion, all in accordance with logical law, and with no more slips than would be expected of a keyboard adding machine.
Logic can become enormously difficult, and it would undoubtedly be well to produce more assurance in its use. The machines for higher analysis have usually been equation solvers. Ideas are beginning to appear for equation transformers, which will rearrange the relationship expressed by an equation in accordance with strict and rather advanced logic. Progress is inhibited by the exceedingly crude way in which mathematicians express their relationships. They employ a symbolism which grew like Topsy and has little consistency; a strange fact in that most logical field.
A new symbolism, probably positional, must apparently precede the reduction of mathematical transformations to machine processes. Then, on beyond the strict logic of the mathematician, lies the application of logic in everyday affairs. We may some day click off arguments on a machine with the same assurance that we now enter sales on a cash register. But the machine of logic will not look like a cash register, even a streamlined model.
So much for the manipulation of ideas and their insertion into the record. Thus far we seem to be worse off than before - for we can enormously extend the record; yet even in its present bulk we can hardly consult it. This is a much larger matter than merely the extraction of data for the purposes of scientific research; it involves the entire process by which man profits by his inheritance of acquired knowledge. The prime action of use is selection, and here we are halting indeed. There may be millions of fine thoughts, and the account of the experience on which they are based, all encased within stone walls of acceptable architectural form; but if the scholar can get at only one a week by diligent search, his syntheses are not likely to keep up with the current scene.
Selection, in this broad sense, is a stone adze in the hands of a cabinetmaker. Yet, in a narrow sense and in other areas, something has already been done mechanically on selection. The personnel officer of a factory drops a stack of a few thousand employee cards into a selecting machine, sets a code in accordance with an established convention, and produces in a short time a list of all employees who live in Trenton and know Spanish. Even such devices are much too slow when it comes, for example, to matching a set of fingerprints with one of five millions on file. Selection devices of this sort will soon be speeded up from their present rate of reviewing data at a few hundred a minute. By the use of photocells and microfilm they will survey items at the rate of thousands a second, and will print out duplicates of those selected.
This process, however, is simple selection: it proceeds by examining in turn every one of a large set of items, and by picking out those which have certain specified characteristics. There is another form of selection best illustrated by the automatic telephone exchange. You dial a number and the machine selects and connects just one of a million possible stations. It does not run over them all. It pays attention only to a class given by a first digit, and so on; and thus proceeds rapidly and almost unerringly to the selected station. It requires a few seconds to make the selection, although the process could be speeded up if increased speed were economically warranted. If necessary, it could be made extremely fast by substituting thermionic-tube switching for mechanical switching, so that the full selection could be made in one-hundredth of a second. No one would wish to spend the money necessary to make this change in the telephone system, but the general idea is applicable elsewhere.
Take the prosaic problem of the great department store. Every time a charge sale is made, there are a number of things to be done.. The inventory needs to be revised, the salesman needs to be given credit for the sale, the general accounts need an entry, and, most important, the customer needs to be charged. A central records device has been developed in which much of this work is done conveniently. The salesman places on a stand the customer's identification card, his own card, and the card taken from the article sold - all punched cards. When he pulls a lever, contacts are made through the holes, machinery at a central point makes the necessary computations and entries, and the proper receipt is printed for the salesman to pass to the customer.
But there may be ten thousand charge customers doing business with the store, and before the full operation can be completed someone has to select the right card and insert it at the central office. Now rapid selection can slide just the proper card into position in an instant or two, and return it afterward. Another difficulty occurs, however. Someone must read a total on the card, so that the machine can add its computed item to it. Conceivably the cards might be of the dry photography type I have described. Existing totals could then be read by photocell, and the new total entered by an electron beam.
The cards may be in miniature, so that they occupy little space. They must move quickly. They need not be transferred far, but merely into position so that the photocell and recorder can operate on them. Positional dots can enter the data. At the end of the month a machine can readily be made to read these and to print an ordinary bill. With tube selection, in which no mechanical parts are involved in the switches, little time need be occupied in bringing the correct card into use - a second should suffice for the entire operation. The whole record on the card may be made by magnetic dots on a steel sheet if desired, instead of dots to be observed optically, following the scheme by which Poulsen long ago put speech on a magnetic wire. This method has the advantage of simplicity and ease of erasure. By using photography, however, one can arrange to project the record in enlarged form, and at a distance by using the process common in television equipment.
One can consider rapid selection of this form, and distant projection for other purposes. To be able to key one sheet of a million before an operator in a second or two, with the possibility of then adding notes thereto, is suggestive in many ways. It might even be of use in libraries, but that is another story. At any rate, there are now some interesting combinations possible. One might, for example, speak to a microphone, in the manner described in connection with the speech-controlled typewriter, and thus make his selections. It would certainly beat the usual file clerk.
6
The real heart of the matter of selection, however, goes deeper than a lag in the adoption of mechanisms by libraries, or a lack of development of devices for their use. Our ineptitude in getting at the record is largely caused by the artificiality of systems of indexing. When data of any sort are placed in storage, they are filed alphabetically or numerically, and information is found (when it is) by tracing it down from subclass to subclass. It can be in only one place, unless duplicates are used; one has to have rules as to which path will locate it, and the rules are cumbersome. Having found one item, moreover, one has to emerge from the system and re-enter on a new path.
The human mind does not work that way. It operates by association. With one item in its grasp, it snaps instantly to the next that is suggested by the association of thoughts, in accordance with some intricate web of trails carried by the cells of the brain. It has other characteristics, of course; trails that are not frequently followed are prone to fade, items are not fully permanent, memory is transitory. Yet the speed of action, the intricacy of trails, the detail of mental pictures, is awe-inspiring beyond all else in nature.
Man cannot hope fully to duplicate this mental process artificially, but he certainly ought to be able to learn from it. In minor ways he may even improve, for his records have relative permanency. The first idea, however, to be drawn from the analogy concerns selection. Selection by association, rather than by indexing, may yet be mechanized. One cannot hope thus to equal the speed and flexibility with which the mind follows an associative trail, but it should be possible to beat the mind decisively in regard to the permanence and clarity of the items resurrected from storage.
Consider a future device for individual use, which is a sort of mechanized private file and library. It needs a name, and to coin one at random, ``memex'' will do. A memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory.
It consists of a desk, and while it can presumably be operated from a distance, it is primarily the piece of furniture at which he works. On the top are slanting translucent screens, on which material can be projected for convenient reading. There is a keyboard, and sets of buttons and levers. Otherwise it looks like an ordinary desk.
In one end is the stored material. The matter of bulk is well taken care of by improved microfilm. Only a small part of the interior of the memex is devoted to storage, the rest to mechanism. Yet if the user inserted 5000 pages of material a day it would take him hundreds of years to fill the repository, so he can be profligate and enter material freely.
Most of the memex contents are purchased on microfilm ready for insertion. Books of all sorts, pictures, current periodicals, newspapers, are thus obtained and dropped into place. Business correspondence takes the same path. And there is provision for direct entry. On the top of the memex is a transparent platen. On this are placed longhand notes, photographs, memoranda, all sort of things. When one is in place, the depression of a lever causes it to be photographed onto the next blank space in a section of the memex film, dry photography being employed.
There is, of course, provision for consultation of the record by the usual scheme of indexing. If the user wishes to consult a certain book, he taps its code on the keyboard, and the title page of the book promptly appears before him, projected onto one of his viewing positions. Frequently-used codes are mnemonic, so that he seldom consults his code book; but when he does, a single tap of a key projects it for his use. Moreover, he has supplemental levers. On deflecting one of these levers to the right he runs through the book before him, each page in turn being projected at a speed which just allows a recognizing glance at each. If he deflects it further to the right, he steps through the book 10 pages at a time; still further at 100 pages at a time. Deflection to the left gives him the same control backwards.
A special button transfers him immediately to the first page of the index. Any given book of his library can thus be called up and consulted with far greater facility than if it were taken from a shelf. As he has several projection positions, he can leave one item in position while he calls up another. He can add marginal notes and comments, taking advantage of one possible type of dry photography, and it could even be arranged so that he can do this by a stylus scheme, such as is now employed in the telautograph seen in railroad waiting rooms, just as though he had the physical page before him.
7
All this is conventional, except for the projection forward of present-day mechanisms and gadgetry. It affords an immediate step, however, to associative indexing, the basic idea of which is a provision whereby any item may be caused at will to select immediately and automatically another. This is the essential feature of the memex. The process of tying two items together is the important thing.
When the user is building a trail, he names it, inserts the name in his code book, and taps it out on his keyboard. Before him are the two items to be joined, projected onto adjacent viewing positions. At the bottom of each there are a number of blank code spaces, and a pointer is set to indicate one of these on each item. The user taps a single key, and the items are permanently joined. In each code space appears the code word. Out of view, but also in the code space, is inserted a set of dots for photocell viewing; and on each item these dots by their positions designate the index number of the other item.
Thereafter, at any time, when one of these items is in view, the other can be instantly recalled merely by tapping a button below the corresponding code space. Moreover, when numerous items have been thus joined together to form a trail, they can be reviewed in turn, rapidly or slowly, by deflecting a lever like that used for turning the pages of a book. It is exactly as though the physical items had been gathered together to form a new book. It is more than this, for any item can be joined into numerous trails.
The owner of the memex, let us say, is interested in the origin and properties of the bow and arrow. Specifically he is studying why the short Turkish bow was apparently superior to the English long bow in the skirmishes of the Crusades. He has dozens of possibly pertinent books and articles in his memex. First he runs through an encyclopedia, finds an interesting but sketchy article, leaves it projected. Next, in a history, he finds another pertinent item, and ties the two together. Thus he goes, building a trail of many items. Occasionally he inserts a comment of his own, either linking it into the main trail or joining it by a side trail to a particular item. When it becomes evident that the elastic properties of available materials had a great deal to do with the bow, he branches off on a side trail which takes him through textbooks on elasticity and tables of physical constants. He inserts a page of longhand analysis of his own. Thus he builds a trail of his interest through the maze of materials available to him.
And his trails do not fade. Several years later, his talk with a friend turns to the queer ways in which a people resist innovations, even of vital interest. He has an example, in the fact that the outranged Europeans still failed to adopt the Turkish bow. In fact he has a trail on it. A touch brings up the code book. Tapping a few keys projects the head of the trail. A lever runs through it at will, stopping at interesting items, going off on side excursions. It is an interesting trail, pertinent to the discussion. So he sets a reproducer in action, photographs the whole trail out, and passes it to his friend for insertion in his own memex, there to be linked into the more general trail.
8
Wholly new forms of encyclopedias will appear, ready-made with a mesh of associative trails running through them, ready to be dropped into the memex and there amplified. The lawyer has at his touch the associated opinions and decisions of his whole experience, and of the experience of friends and authorities. The patent attorney has on call the millions of issued patents, with familiar trails to every point of his client's interest. The physician, puzzled by its patient's reactions, strikes the trail established in studying an earlier similar case, and runs rapidly through analogous case histories, with side references to the classics for the pertinent anatomy and histology. The chemist, struggling with the synthesis of an organic compound, has all the chemical literature before him in his laboratory, with trails following the analogies of compounds, and side trails to their physical and chemical behavior.
The historian, with a vast chronological account of a people, parallels it with a skip trail which stops only at the salient items, and can follow at any time contemporary trails which lead him all over civilization at a particular epoch. There is a new profession of trail blazers, those who find delight in the task of establishing useful trails through the enormous mass of the common record. The inheritance from the master becomes, not only his additions to the world's record, but for his disciples the entire scaffolding by which they were erected.
Thus science may implement the ways in which man produces, stores, and consults the record of the race. It might be striking to outline the instrumentalities of the future more spectacularly, rather than to stick closely to the methods and elements now known and undergoing rapid development, as has been done here. Technical difficulties of all sorts have been ignored, certainly, but also ignored are means as yet unknown which may come any day to accelerate technical progress as violently as did the advent of the thermionic tube. In order that the picture may not be too commonplace, by reason of sticking to present-day patterns, it may be well to mention one such possibility, not to prophesy but merely to suggest, for prophecy based on extension of the known has substance, while prophecy founded on the unknown is only a doubly involved guess.
All our steps in creating or absorbing material of the record proceed through one of the senses - the tactile when we touch keys, the oral when we speak or listen, the visual when we read. Is it not possible that some day the path may be established more directly?
We know that when the eye sees, all the consequent information is transmitted to the brain by means of electrical vibrations in the channel of the optic nerve. This is an exact analogy with the
electrical vibrations which occur in the cable of a television set: they convey the picture from the photocells which see it to the radio transmitter from which it is broadcast. We know further that if we can approach that cable with the proper instruments, we do not need to touch it; we can pick up those vibrations by electrical induction and thus discover and reproduce the scene which is being transmitted, just as a telephone wire may be tapped for its message.
The impulses which flow in the arm nerves of a typist convey to her fingers the translated information which reaches her eye or ear, in order that the fingers may be caused to strike the proper keys. Might not these currents be intercepted, either in the original form in which information is conveyed to the brain, or in the marvelously metamorphosed form in which they then proceed to the hand?
By bone conduction we already introduce sounds into the nerve channels of the deaf in order that they may hear. Is it not possible that we may learn to introduce them without the present cumbersomeness of first transforming electrical vibrations to mechanical ones, which the human mechanism promptly transforms back to the electrical form? With a couple of electrodes on the skull the encephalograph now produces pen-and-ink traces which bear some relation to the electrical phenomena going on in the brain itself. True, the record is unintelligible, except as it points out certain gross misfunctioning of the cerebral mechanism; but who would now place bounds on where such a thing may lead?
In the outside world, all forms of intelligence, whether of sound or sight, have been reduced to the form of varying currents in an electric circuit in order that they may be transmitted. Inside the human frame exactly the same sort of process occurs. Must we always transform to mechanical movements in order to proceed from one electrical phenomenon to another? It is a suggestive thought, but it hardly warrants prediction without losing touch with reality and immediateness.
Presumably man's spirit should be elevated if he can better review his shady past and analyze more completely and objectively his present problems. He has built a civilization so complex that he needs to mechanize his record more fully if he is to push his experiment to its logical conclusion and not merely become bogged down part way there by overtaxing his limited memory. His excursion may be more enjoyable if he can reacquire the privilege of forgetting the manifold things he does not need to have immediately at hand, with some assurance that he can find them again if they prove important.
The applications of science have built man a well-supplied house, and are teaching him to live healthily therein. They have enabled him to throw masses of people against another with cruel weapons. They may yet allow him truly to encompass the great record and to grow in the wisdom of race experience. He may perish in conflict before he learns to wield that record for his true good. Yet, in the application of science to the needs and desires of man, it would seem to be a singularly unfortunate stage at which to terminate the process, or to lose hope as to the outcome.
Friday, July 15, 2005
Web archive sued over use in another suit
The Future of the Book
Saturday, July 09, 2005
Creative Commons and Creative Commons Search Tools
The federal government offers access to a wealth of public domain content that can be used in creative and interesting ways. Most content created by the federal government is not protected under existing copyright laws.1 The Library of Congress and the National Archives have vast collections of photographs and prints, videos and movies, and audio recordings available for use. Just to be on the safe side, though, always read the fine print when you use audio, video, film, or images from the Library of Congress — or, indeed, any other archive, museum, or public library. Likewise, many Web sites from the executive branch of the federal government offer extensive digital collections.2
How can you help patrons identify public domain content that might come from blogs, podcasts, Web sites, and organizations? Existing copyright laws have made it more difficult to identify public domain content. Why? Because everything copyrighted once exists in a “tangible medium.” What does this mean? The e-mail you sent to your brother is protected by copyright. The picture you took at your cousin’s wedding is copyright-protected. The sketch you made of your dog while sitting through another boring meeting is also protected under current copyright law. Consequently, there is no way, until recently, to identify not only what materials the “public” already owns, so to speak, but what materials owners of the copyright might want to make available for others to use, without requiring the them to ask for permission. Of course, even the generous might have some limits on use....
A Quick Overview of Copyright Law: 1790–2005
Copyright law has undergone significant and far-reaching changes since 1790 when Congress first implemented the copyright provisions as spelled out in Article 1, Section 8, Clause 8 of the United States Constitution. In that original copyright law, Congress has the authority to “promote the progress of science and the useful arts by securing for a limited time to authors and inventors the exclusive right to their writings and discoveries.” The law “granted American authors the right to print, re-print, or publish their work for a period of 14 years and to renew for another 14.”3 The framers of the Constitution and the law that codified the implementation said that copyright “was meant to provide an incentive to authors, artists, and scientists to create original works by providing creators with a monopoly. At the same time, the monopoly was limited in order to stimulate creativity and the advancement of ‘science and the useful arts’ through wide public access to works in the ‘public domain.’”6 However, to receive all the protections of copyright, the person seeking copyright protection had to register the work. If you failed to register the work, you lost all copyright protections and your work would enter into the public domain.
For major changes to protections, the next major revision came about in 1909 when Congress increased the list of protected works and also extended copyright to include all works of an author. The act also extended the term of protection to 28 years with the possibility of a one-time renewal of another 28 years.7
Copyright protections underwent major and significant revision again with the Copyright Act of 1976. Congress made the revision for two important reasons: technological changes producing new media types requiring specific coverage and compliance with international copyright laws and practices, specifically the Berne Convention. The Copyright Act of 1976 had several far-reaching consequences. The Act “preempted all previous copyright law and extended the term of protection to life of the author plus 50 years (works for hire were protected for 75 years). The act covered the following areas: scope and subject matter of works covered, exclusive rights, copyright term, copyright notice and copyright registration, copyright infringement, fair use and defenses, and remedies to infringement. With this revision, for the first time the fair use and first sale doctrines were codified and copyright was extended to unpublished works.”8
In addition, the 1976 revision dramatically changed the previous requirements surrounding registration and renewal of works. Previously, as we have seen, one had to register the work with the Copyright Office to claim all the rights and protections of copyright law. With the Copyright Act of 1976, you no longer had to register or renew copyright to enjoy all its protections. “Henceforth, everything — from e-mail message to doodles on a napkin — was automatically copyrighted the moment it was ‘fixed in a tangible medium.’”9
In 1988, the United States signed onto the terms of the Berne Convention. Consequently, this meant “greater protection for proprietors, new copyright relationships with 24 countries, and elimination of the requirement of copyright notice for copyright protection.”10
Since the major revision of 1976, copyright law has undergone two other important changes. In 1998, Congress passed and President Clinton signed into law the Sonny Bono Copyright Term Extension Act (CTEA) and the Digital Millennium Copyright Act of 1998 (DMCA). The Copyright Term Extension Act extended the “duration of U.S. copyrights by 20 years. Before the act, copyrights lasted for the life of the author plus 50 years. After the act, copyrights lasted the life of the author, plus 70 years in the case of individual works, or 75 to 95 years in the case of works of corporate authorship and works first published before January 1, 1978. It also affected works still under copyright that were published prior to this date, increasing their term of protection by 20 years as well.”11
The Digital Millennium Copyright Act of 1998 “prohibits gaining unauthorized access to a work by circumventing a technological protection measure put in place by the copyright owner where such protection measure otherwise effectively controls access to a copyrighted work.”12 In other words, if the owner of the copyright has implemented a technological control that prevents you from copying, distributing, sharing, or sampling the work, you cannot develop a means of breaking that control. If you develop software tools that can break the copyright protection control, you violate the DMCA and become subject to prosecution.
Some disagree with the path of modern copyright legislation. Larry Lessig makes the point in his book, Free Culture, that the previous copyright renewal system “assured that the maximum terms of copyright would be granted only for works where they were wanted. After the initial term of 14 years, if it wasn’t worth it to an author to renew his copyright, then it wasn’t worth it to society to insist on the copyright, either.”13 Since that initial law, copyright has been revised many times, with this net result — copyright is for the life of the author plus 70 years and 95 years for corporate authorship. These extensions seem to fly in the face of the original intent of that first copyright law. Limited copyrights would protect the creator of the work for 14 years or, if they acted to renew copyright, up to 28 years. After that, the work went into the public domain where anyone could use it. Lessig comments that “the effect of these extensions is simply to toll, or delay, the passing of works into the public domain.”14 “Thus, in the 20 years after the Sonny Bono Act, while 1 million patents will pass into the public domain, zero copyrights will pass into the public domain by virtue of the expiration of a copyright term.”15 We have moved away from the “cultural commons,” where ideas can be shared, distributed, improved — the original intent of Thomas Jefferson and the founding fathers. We have moved toward what Larry Lessig calls the “permission culture.” If you want to use something you must get permission first. The system used to be an opt-in system in which creators were required to register works to receive copyright protections. Since 1978, the system has changed from an opt-in system to an opt-out system.16 The bottom line for Lessig and others who share his mindscape is that the public domain is suffering and, by extension, creativity and innovation as well.
Creative Commons
What to do about it? Enter the Creative Commons. The Creative Commons Foundation, the innovative brainchild of an impressive list of lawyers, filmmakers, entrepreneurs, and publishers, came to be in 2001. The Board of Directors of the Creative Commons Foundation includes:
• Lawrence Lessig (chairman and professor of law at Stanford University)
• James Boyle (professor of law at Duke University)
• Michael Carroll (formerly an attorney with Wilmer, Cutler & Pickering and currently an assistant professor of law at Villanova University School of Law)
• Molly Shaffer Van Housweling (formerly the executive director of Creative Commons and currently assistant professor at the University of Michigan Law School)
• Hal Abelson (co-director of the MIT-Microsoft Research Alliance in educational technology and co-head of the MIT Council on Educational Technology),
• Eric Saltzman (attorney and filmmaker)
• Davis Guggenheim (director and producer of both documentary and dramatic films and television)
• Joi Ito (founder and CEO of Neoteny, a venture capital firm)
• Eric Eldred (editor and publisher of Eldritch Press)
The foundation’s goal is to build a reasonable copyright that encourages authors, filmmakers, photographers, and/or musicians to allow others to use their works by opting out of the onerous and burdensome requirements of existing copyright law. It seeks to create a system that promotes “balance, compromise, and moderation” with respect to copyrights and to “offer creators a best-of-both-worlds way to protect their works while encouraging certain uses of them….”17 Think of it this way. “Share what you want, keep what you want.”18 Their vision moves away from the restrictive “All rights Reserved”/ “No Rights Reserved” realities of current copyright law to a middle ground — “Some Rights Reserved.”
The inspiration behind Creative Commons came from Richard Stallman and the creation of the Free Software Foundation’s GNU General Public License (GNU GPL). Lessig and the Creative Commons board wanted to apply the same principles that Stallman had developed for software to text, film, audio, and images. They want to develop tools and resources for today’s authors, musicians, photographers, and filmmakers who want to share their work with others by specifying what people can and cannot use without permission. They aim “to increase the sum of raw source material online, but also to make access to that material cheaper and easier.” In thinking about this, they developed three important pieces that together make this goal achievable. The pieces include a commons deed — “a simple, plain-language summary of the license, complete with the relevant icons,” the legal code — the fine print that you need to be sure the license will stand up in court,” and the digital code — a machine-readable translation of the license that helps search engines and other applications identify your work by its terms of use.”19 The Creative Commons Web site [http://creativecommons.org] has all the licenses listed and information to help those interested in sharing their work to identify which license fits their specific needs and requirements.
Take a look at all the Creative Commons’ licenses. The licenses explain clearly what people can and cannot and provide examples of how to decide what kind of license to use. A series of discussion groups deal with questions about real-life experiences [http://creativecommons.org/discuss]. As with any new organization, there are bound to be growing pains, and Creative Commons is no different than any other new group. The discussion groups help identify issues and challenges that need to be addressed, worked through, and solved.
One of the really creative aspects of the Creative Commons licensing tools is the use of metadata embedded directly into the license itself. By utilizing metadata, based on RDF/XML specifications, the founders of Creative Commons support the vision of the Semantic Web. They also lend their support to developers to create tools (search engines and file-sharing applications) that take advantage of the embedded metadata and help the end user and the librarian find specific types of content — text, audio, video, film, speeches, music, and images. When this happens, we will all have an easier time finding and identifying materials to use in our own creative works.
How to Find and Identify Creative Commons Licensed Work
The Creative Commons Web site provides several different ways to identify and find works that have a Creative Commons license. Under the Find section of the Creative Commons home page, you will find a list of browsing and searching options. The browsing option is arranged by directories and then by type of media: audio, images, video, and educational. Although not comprehensive, the Common Content directory can be an effective way to browse for Creative Commons content.
You can also find new content, new announcements, interviews, and new tools via the Creative Commons home page and the Creative Commons blog. You can sign up for the newsletter and use an RSS feed for both the blog and for the site as a whole.
Searching for Creative Commons Content
Creative Commons also offers a search engine (powered by Nutch — an open source search engine) that lets searchers limit their search by type of format (audio, image, interactive, text, and video) and by different licensing options [http://creativecommons.org/find/]. You can search for works available for commercial purposes or for works that can be modified, adapted, or built upon. After you have done a search, the results will connect to Web sites that contain either the Creative Commons metadata or a link back to a Creative Commons license. Results display the licensing options that the owner has agreed to allow.
I did a search on “Glacier National Park” and limited results to include works that can be modified, adapted, or built upon. (Glacier National Park in Montana is one of the real national park treasures and a great place to go cycling — some really great climbs).
Results
Stephen’s Web ~ by Stephen Downes ~ Montana ... high up in Glacier National Park. A view from ... Downes Copyright © 2004 Stephen Downes National ... (v) http://www.downes.ca/photos/montana.htm
If you forget what all of the icons represent, the system provides a key that shows the icons and describes what each icon means. This is a very nice touch. Also, the search engine links (v) to a little program called ccValidator. This program inspects and displays license metadata associated with any page. Pretty cool.
Warning: Once you have identified a site that contains content that you might want to use, it is critical that you read the fine print of the license. You need to know if the author of the content is making one, some, or all content available under the Creative Commons license. Likewise, if you decide to publish your content under a Creative Commons license, it is in your interest to specify exactly what content you are making available under the Creative Commons license. Creative Commons provides a list of examples of what others are doing in this regard.20
The Creative Commons search engine is a great way to learn about new Creative Commons content, but, unless you know about the search engine, Creative Commons content becomes essentially opaque to most end users.
Creative Commons Can Help
The browsing option reaches only a small sampling of Creative Commons licensed content. The Creative Commons team refuses to develop a comprehensive directory or database of Creative Commons content because they feel it undermines the vision of the Net — a distributed, decentralized network. Consequently, there is no complete directory. And this frankly is a real disappointment and a glaring weakness. I would argue that they should stop looking at the development of a directory/database as “a centralized, Soviet-style information bank controlled by a single organization” (the quote comes from Creative Commons FAQ — Is Creative Commons building a database of licensed content? [http://creativecommons.org/faq#faq_entry_3482]). Instead, they should consider a directory as a celebration of the work being done and, most importantly, a tool for the student, the musician, the photographer, and the entrepreneur in finding other content they need. If Creative Commons is not prepared to step up and create a complete directory/database of Creative Commons content, then maybe Yahoo! can fill this void. What better organization is equipped to develop a directory than Yahoo!? So ask Yahoo! to build a directory that will help all of us find Creative Commons content. If you ask, Yahoo! might just do it and it really needs to be done.
To answer my original questions, librarians now have a useful tool they can use to help identify content that patrons might want to use in a podcast, a mash-up, a collage, a video contribution to a blog, a document, a presentation, or whatever. It’s called Creative Commons and, with the vertical search opportunities provided by Yahoo! Search and Creative Commons’ own Nutch-powered search engine, we can assist end users in finding new content that allows them copyright flexibility. Use it. Promote it. Share it. It’s all good.
Endnotes
1 There are some exceptions to federal government information and copyright. If you are a government contractor and you produce a report or presentation, the contract will determine if that information, even though paid for by the taxpayers, could be copyrighted. It is best to look and see if the information holds a copyright symbol.
2 U.S. Copyright Office — Copyright Basics [http://www.copyright.gov/circs/circ1.html] (accessed April 30, 2005).
3 Timeline: A History of Copyright in the United States — Association of Research Libraries [http://arl.cni.org/info/frn/copy/timeline.html].
4 Creative Commons — About The Sampling Licenses [http://creativecommons.org/projects/sampling].
5 Music — Sampling Licenses [http://creativecommons.org/about/sampling].
6 Timeline: A History of Copyright in the United States — Association of Research Libraries [http://arl.cni.org/info/frn/copy/timeline.html].
7 Timeline: A History of Copyright in the United States — Association of Research Libraries [http://arl.cni.org/info/frn/copy/timeline.html] and Digital Law Online,
Professor Lee A. Hollaar, School of Computing, University of Utah [http://digital-law-online.info/lpdi1.0/treatise4.html].
8 Timeline: A History of Copyright in the United States — Association of Research Libraries [http://arl.cni.org/info/frn/copy/timeline.html].
9 Robert S. Boynton, “The Tyranny of Copyright?” The New York Times Magazine, January 25, 2005 [http://query.nytimes.com/gst/abstract.html?
res=F70B1EFB3F5D0C768EDDA80894DC404482], or [http://www.cepr.net/Economic_Reporting_Review/
nytimesarticles/tyrannycopyright.htm].
10 Timeline: A History of Copyright in the United States — Association of Research Libraries [http://arl.cni.org/info/frn/copy/timeline.html].
11 Wikipedia, The Sonny Bono Copyright Term Extension Act of 1998, [http://en.wikipedia.org/wiki/
Sonny_Bono_Copyright_Term_Extension_Act] (accessed on April 29, 2005).
12 Timeline: A History of Copyright in the United States — Association of Research Libraries [http://arl.cni.org/info/frn/copy/timeline.html].
13 Lawrence Lessig, Free Culture: How Big Media Uses Technology and the Law to Lock Down Culture and Control Creativity, New York: The Penguin Press, 2004, pp. 133–134.
16 Robert S. Boynton, “The Tyranny of Copyright?,” The New York Times Magazine, January 25, 2005 [http://query.nytimes.com/gst/abstract.html?
res= F70B1EFB3F5D0C768EDDA80894DC404482], or [http://www.cepr.net/Economic_Reporting_Review/
nytimesarticles/tyrannycopyright.htm].
17 Creative Commons — About Us [http://creativecommons.org/about/history] (accessed on April 30, 2005).
18 Framasoft — Creative Commons: Let’s Be Creative Together (May 27, 2004) [http://www.framasoft.net/article2389.html#nb2] (accessed April 30, 2005).
19 Creative Commons FAQ — So what, exactly, does Creative Commons plan to do? [http://creativecommons.org/faq#faq_3310].
20 Take a look at the page “How to Tag Works.” This page gives useful suggestions and examples of how authors and bloggers are tagging their pages with Creative Commons Licenses [http://creativecommons.org/technology/web].
21 Flickr — Creative Commons licensing options [http://www.flickr.com/creativecommons/].